<p>整体来说是靠谱的。对于量化而言,我们一再强调,这是一个在投资实践过程中祛魅的手段。选择了量化,投资人便诉诸了自身的理性,他将摆脱感性与玄学的束缚,他的投资行为便具有了可复制性——如果时间倒退,
推坊网
  • 量化交易 收益来源-量化交易中所谓的问题怎么解释

      阅读量: 1315次 点赞:301次 收藏:144次 量化交易 收益来源

    一、 量化交易靠谱吗?

    整体来说是靠谱的。对于量化而言,我们一再强调,这是一个在投资实践过程中祛魅的手段。选择了量化,投资人便诉诸了自身的理性,他将摆脱感性与玄学的束缚,他的投资行为便具有了可复制性——如果时间倒退,在同样的时间点他会做出相同的选择。这是知行合一的基础。

    从某种意义上讲,只要认为对各类投资标的进行分析的行为仍然有价值,那量化一定就有用。除非依赖内幕消息这种手段进行交易,无论是主观选股、宏观对冲亦或者是其他方法,都能找到数据与模型在其中活跃的影子,区别只在于投资人将自身投资理念抽象并进行分析与研究的能力有高低之分而已。

    对于交易而言,量化作为一种范式,可以说具有压倒性的优势。尤其对于体量较大的投资者而言,如果交易量足够大,那会对市场造成更大的冲击成本。这一成本会蚕食相当一部分的利润。因此对于体量较大的投资人来说,基于量化研究出来的各类执行算法几乎可以说是必须的。以金纳科技的实证经验来看,选择使用量化交易算法,会显著地降低交易带来的冲击成本。对于券商自营和公募来讲,毫无疑问算得上是必须之物。

    当然,有人会说,那就不用机器学习,用技术指标就好。可是事实上,那些指标本质上也是一些基于原始特征挖掘出来的特征,几乎全部都是基于量价时间序列在上世纪的美股市场挖掘出来的特征,也许这些特征在那个时候有一定市场意义,而现在是2020年的A股市场,我几乎能肯定的是这些特征的成功率会随时间增长收敛于1/2。数据信噪比低,数据涵盖的信息少,导致A股量化对投资者的要求极高,必须得要用他们的投资经验去弥补交易数据有效信息不足的短板。这也是我建议手动交易经验足够的前提下,才去做量化的原因。

    不是骗局。是十分专业的领域,需要金融、数学、物理,心理学方面的深入积累和研究,有很多人打着量化交易旗子骗人,因为专业度太高,很多人不明所以。其实量化交易是靠谱的。 我个人觉得不是特别的靠谱,所以我觉得大家还是要离他远一点吧。 相对来说还是比较靠谱的,而且很多人都非常的信赖,同时也会有一个不错的收益。
    量化交易靠谱吗?

    二、 A股的巨额成交量都是由谁贡献的?量化交易为什么会火?

    一则关于“A股的巨额成交量都是由谁贡献的?量化交易为什么会火”成为了一个热门的问题?接下来我来说一下我的看法。 在股市中,A股的巨额成交量都是由谁贡献的?量化交易为什么会火?其实,在股市中,A股的巨额成交量都是由大部分的机构和散户所一起造成的,比如说有一只股票当天的成交量为五个亿,那么可能机构买了一两个亿,另外的三个亿或四个亿都是有许许多多的散户一起购买所造成的成交量,最终结合起来,就会有巨额成交量。量化交易为什么会火?其实,量化交易的其根本原因就是因为一个股票有许多的成交量,说明这个股票比较活跃,买的人多,卖的人也多,所以振幅会比较大一点,才能够让人赚到钱,如果一只股票的成交量很少,那么他一天的振幅可能才只有1%,这种政府少的股票一般都是赚不到什么钱的。

    股市中的巨额成交量由谁贡献的

    在股市中,A股的巨额成交量都是由谁贡献的?为什么量化交易会火?在这里我先说一下,A股的巨额成交量是由谁贡献的?在A股中,一只股票的巨额成交量是由许许多多的各方之间所及和造成的,比如说一只股票里面当天有六个亿的成交量,那么可能其中有一两个亿可能是机构造成的,然后其他的几亿可能是由许多的散户和各路游资所集合贡献的,最终造就了六个亿的成交量。

    为什么量化交易会火

    量化交易会火是因为一只股票,如果是成交量比较大的话,那么就说明该股票的振幅比较大,比较活跃,容易让一些有技术的股民赚到钱,而一些成交量很低的股票,那么他好几天加起来的振幅,可能也就只有1%或2%,所以根本不能让人赚到钱且浪费时间。

    一般都是股票持有者提供的,是因为这些人的购买能力比较强,而且他们在购买股票的时候购买的数量比较多,所以导致这个股票成交量也比较高,因为这种交易也是比较新型的,然后也比较稳定。 成交量都是由中信证券贡献的,因为中信证券在此次的交易中有非常多的交易额。是因为量化交易的速度非常快,不会受情绪的影响,也是因为根据经验的判断来进行操作,没有任何的操作难度,所以才会非常受欢迎。 A股的巨额成交量大部分是散户和机构贡献的,量化交易火是因为利润高。 这些成交量都是股民们贡献的。量化交易会火是因为其中有利可图,能够获得一定的利益和经济收益,操作起来也是比较简单的,风险也比较低。
    A股的巨额成交量都是由谁贡献的?量化交易为什么会火?

    三、 量化交易是什么?

    追根溯源,其实量化就是指运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益。“量化”在做的事情,即把投资策略通过数学模型和计算机代码数量化,让投资者可以基于数据分析和动态模拟而合理预测其投资行为的未来走势。

    量化的基础是精准定义,许多人以某形态为进场依据,那么精准定义就要求结合明确位置的基础上,以波动点为标准的精准定义。只要是熟悉交易的人都明白,只要成功率和盈亏比配搭合理,交易就等于一只脚踏进了稳定盈利的大门,可问题是如何确定盈亏比和成功率却也是有前提条件的!

    如果仅仅是依据自己的交易结果,按照自己的平均亏损和平均盈利得出的盈亏比和成功率,那一定是无效的,因为你没有一单是在同一个框架下的,就好比你拿小学3年级的期末考试成绩+大学毕业时的论文成绩+学日语的随堂测试成绩的平均成绩一样,有任何意义吗?

    那么,有效的成功率、盈亏比,就一定是在统一标准的量化统计下得出的,而统一标准就意味着无论是系统的基础标准、参数,还是系统构建完成后的统计标准都必须是一致的。甚至在通过统计结果对系统进行重大修正后的统计都必须是要归零,重新记录统计的。每个交易者都在讨论的成功率和盈亏比,在没有精确定义的量化交易系统情况下,是无法得出有效值的。当然如果你仅仅想知道自己交易一段时间的成果,那另当别论。

    投资不是赌博而是博弈,理性的投资者应该学会运用投资策略来实现自己的财富增值。

    量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种"大概率"事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。 量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

    【弗雷德•杰姆】量化交易与资金管理(高清)  PDF电子书.PDF    免费下载

    链接:  https://pan.baidu.com/s/1m95nsKM7Pf9LKQ7hYpLTcw

    提取码: 7rav    

    量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

    量化交易是什么?

    四、 量化交易主要有哪些经典的策略?

    交易策略,量化策略,主观策略,常见策略。

    交易策略:一个完整的交易策略一般包括交易标的的选择,进出场时机的选择,仓位和资金管理等几个方面。按照人的主观决断和计算机算法执行在策略各方面的决策中的参与程度的不同,可以将交易策略分为主观策略和量化策略。

    主观策略:主观策略主要依靠投资者的主观判断,期货市场的投资者通过对产业上中下游、供需、宏观经济预期等的调查做出自己的判断。类似股票市场的主观投资者通过深入研究行业的各个方面,调查行业内的上市公司,形成交易决策。

    量化交易注意事项

    在量化交易中,交易规则、参数和回测都要依靠历史数据计算获得。我们无法判断这些从历史数据中获得的规律能否在未来的市场中持续有效,所构建的交易模型也无法判断能否应用。

    简单的量化因子和策略更容易让人理解和接受,但越是简单的策略越容易被人们知悉,量化交易所获得的超额收益也越低。

    量化交易主要有哪些经典的策略?

    五、 cq量化交易是什么意思

    cq量化交易就是指以先进的数学模型替代人为的主观判断,利用计算机技术,从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件。量化交易极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

    cq量化交易特点如下:

    1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。

    2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。

    3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

    4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

    cq量化交易风险如下:

    1、历史数据的不完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是目前量化交易难以克服的。

    2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。

    3、网络中断,硬件故障也可能对量化交易产生影响。

    4、同质模型产生竞争交易现象导致的风险。

    5、单一投资品种导致的不可预测风险。

    cq量化交易是什么意思

    六、 什么是量化交易

    量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
    拓展资料:
    量化投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于量化投资管理是“定性思想的量化应用”,更加强调数据。量化交易具有以下几个方面的特点:
    1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
    2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
    3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
    4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
    量化投资技术包括多种具体方法,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。在此,以统计套利和算法交易为例进行阐述。
    1、统计套利
    统计套利是利用资产价格的历史统计规律进行的套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。
    统计套利的主要思路是先找出相关性最好的若干对投资品种,再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓,买进被相对低估的品种、卖空被相对高估的品种,等价差回归均衡后获利了结。
    股指期货对冲是统计套利较常采用的一种操作策略,即利用不同国家、地区或行业的指数相关性,同时买入、卖出一对指数期货进行交易。在经济全球化条件下,各个国家、地区和行业股票指数的关联性越来越强,从而容易导致股指系统性风险的产生,因此,对指数间的统计套利进行对冲是一种低风险、高收益的交易方式。
    2、算法交易
    算法交易又称自动交易、黑盒交易或机器交易,是指通过设计算法,利用计算机程序发出交易指令的方法。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格,甚至包括最后需要成交的资产数量。
    什么是量化交易

    七、 什么是量化交易?个人如何做量化交易?

          一、何谓量化交易
          量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
          量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额预期年化预期收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
    二、量化交易的发展
          对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
          据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
          事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的预期年化预期收益。
          “传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
          据华联期货介绍,量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
    三、量化交易的特点
          “量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的预期年化预期收益,但2008年大熊市也有15%左右的预期年化预期收益。”
          “资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高预期年化预期收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
          量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
    什么是量化交易?个人如何做量化交易?

    八、 个人投资者如何量化交易

    量化投资是运用机器学习、模式识别、数据挖掘等方法建立数学模型,形成投资策略并做成计算机程序,进行自动化交易的一种投资方式。如果从大类上划分,它又可分为“量化策略”和“算法交易”。
    简单来说,前者是利用量化的方式,对金融市场进行分析、判断从而交易的策略。当我们研究策略时,可以在历史数据上回测,对过去指定时间段进行模拟交易,从而得到的收益以及净值变情况,并通过实时数据进行策略仿真,模拟策略的实时交易进行结果的预判。而算法交易是一种程序化交易方式,利用特定算法决定交易下单的时机、价格乃至最终下单的数量等,可以减少交易摩擦成本。
    量化投资的方式可以帮助我们避免在市场极度狂热或悲观的情况下作出非理性的投资决策。于是,越来越多的投资者开始参与其中。
    拓展资料
    一、何谓量化交易
    量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
    量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
    二、量化交易的发展
    对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了1.4倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
    据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。目前,绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的收益。
    “传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
    个人投资者如何量化交易

    九、 量化交易中所谓的问题怎么解释

    1. 区分好样本内数据和样本外数据,这个和机器学习很类似,样本内数据用于训练,样本外数据用于校验。这样做的目的是为了避免过拟合陷阱。
    2. 收益的分布,看看你回测后所有交易的收益分布,看看你的收益来源是少数的几次大的收益还是来源多次的小的收益。来源于大的收益,你的收益波动性就很大,实盘往往会达不到你的效果。
    3. 参数的稳定性。如果你某个参数过敏感,随便调整下就对收益影响很大,那你实盘的情况和模拟盘也有很大可能会有出入。
    这类策略严格来说,避免了一些常见的坑,还是比较容易做到回测和实盘类似的。
    对于高频交易来说,回测和实盘的差距就更大了,需要注意的点就更多了,简单列出几个吧:
    1. 数据的精度,基本来说,这类策略需要是全部行情严格按照时间戳来回放,分钟级别的都太粗糙了。
    2. 滑点问题,实盘很难避免滑点,你要估计出一个滑点的数字,在回测里扣除。
    3. 行情的延迟问题,在回测里行情是没有延迟的,而在实盘行情必然有延迟,这部分也会对收益有很大影响。
    4. 成交问题,有些策略,比如被动做市商策略,你需要自己模拟订单的撮合成交情况,这部分和实盘往往有很大差距,你需要尽可能的去近似。而你采用交易所提供的模拟撮合环境的话,基本上是不可信的。
    5. 在实盘因为延迟的缘故,你还会遇到反向选择的问题,你也需要去评估实盘和回测这方面的差距。 量邦科技资深人士总结: (1)股票、基本面、新闻消息之间的关系不停变化 记得2009年美股到达低点的时候,很多“低质”公司的回报大大高于“优质”公司的回报。
    很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要。
    量化交易中所谓的问题怎么解释

    十、 量化交易是什么?

    “量化交易”有着两层含义:一是从狭义上来讲,是指量化交易的内容,将交易条件转变成为程序,自动下单;二是从广义上来讲,是指系统交易方法,就是一个整合的交易系统。
    【拓展资料】
    一、量化交易主要运用数学公式来构建模型,经过大量数据来判断将来价格走势,并且由程序进行择机选股的一种方式。它的选股而十分广泛,覆盖面达到上百只甚至上千只股票,并且能够排除迫涨杀跌等人为因素,纪律性很强。
    二、“量化交易”有着两层含义:一是从狭义上来讲,是指量化交易的内容,将交易条件转变成为程序,自动下单;二是从广义上来讲,是指系统交易方法,就是一个整合的交易系统。即为根据一系列交易条件,智能化辅助决策体系,将丰富的从业经验与交易条件相结合,在交易过程管理好风险控制。
    三、量化交易至少应该包括五个方面的要素:
    (1)买入和卖出的信号系统。
    (2)牛市还是熊市的方向指引,比如用200天移动平均线分辨熊市中系统风险的规避。
    (3)头寸管理以及资金管理。
    (4)风险控制,运用信号源来确定止损位置,利用资产曲线和权益曲线来加以判定和管理。
    (5)投资组合,不一样的投资品种、不相同的交易系统(不同功能和参数,有快有慢)以及四、不相同时间周期组合,现分散组合,让交易账户波动更加稳定。量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
    五、首先,从全球市场的参与主体来看,按照管理资产的规模,2018年全球排名前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,而且进入2019年由量化及程序化交易所管理的资金规模进一步扩大。
    六、其次,全球超70%的资金交易用计算机或者程序进行,其中一半是由量化或者程序化的管理人来操盘。在国外招聘网站搜索金融工程师(包括量化、数据科学等关键词)会出现超过33万个相关岗位。
    七、第三、从高校的培养方向来看,已有超过450所美国大学设置了金融工程专业,每年相关专业毕业生达到1.5万人,市场需求与毕业生数量的差距显著,因此数据科学、计算机科学、会计以及相关STEM(基础科学)学生毕业后进入金融行业从事量化分析和应用开发的相关工作。
    八、国内市场,目前国内量化投资规模大概是3500到4000亿人民币,其中公募基金1200亿,其余为私募量化基金,数量达300多家,占比3%(私募管理人共9000多家),金额在2000亿左右。中国证券基金的整体规模超过16万亿,其中公募14万亿,私募2.4万亿,乐观估计,量化基金管理规模在国内证券基金的占比在1%~2%,在公募证券基金占比不到1%,在私募证券基金占比5%左右,相比国外超过30%的资金来自于量化或者程序化投资,国内未来的增长空间巨大。
    九、量化交易特点,编辑,量化投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于量化投资管理是“定性思想的量化应用”,更加强调数据。
    十、量化交易具有以下几个方面的特点:
    1.纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
    2.系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
    量化交易是什么?



    参考文档

    下载:上证50期货交易手续费《香港中大期货可以交易些什么》《恒指开户直播室》《重庆李俊期货》《周期性期货》《期货研究员招聘》下载:买石油期货现在是负值更多关于《量化交易 收益来源》的文档...