一、 怎样看出股票有量化交易
量化投资对散户投资者来说,其实是非常不友好的,打个比方:当一只股票涨停的时候,量化交易发出了卖出指令,就会将封板的股票开板,开板后再持续上涨就难。
拓展资料:
股市:
股市一般指股票市场。股票市场是已经发行的股票转让、买卖和流通的场所,包括交易所市场和场外交易市场两大类别。由于它是建立在发行市场基础上的,因此又称作二级市场。股票市场的结构和交易活动比发行市场(一级市场)更为复杂,其作用和影响力也更大。
股票市场一般分为股票发行市场和股票交易市场两部分。两个市场既有区别又有联系。
发行市场
又称一级市场或初级市场。股票发行是发行公司自己或通过证券承销商(信托投资公司或证券公司)向投资者推销新发行股票的活动。股票发行大多无固定的场所,而在证券商品柜台上或通过交易网络进行。发行市场的交易规模反映一国资本形成的规模。股票发行目的:
一是为新设立的公司筹措资金;二是为已有的公司扩充资本。
发行方式有两种:
由新建企业自己发行,或要求投资公司、信托公司以及其他承销商给予适当协助;
由证券承销商承包发售。两种方式各有利弊,前者发行费用较低,但筹资时间较长。后者筹资时间较短,但费用较高,需要付给投资公司、信托公司或承销商一定的手续费。
交易市场
又称二级市场或流通市场,包括:
证券交易所市场,是专门经营股票、债券交易的有组织的市场,根据规定只有交易所的会员、经纪人、证券商才有资格进入交易大厅从事交易。进入交易的股票必须是在证券交易所登记并获准上市的股票。
场外交易市场,又称证券商柜台市场或店头市场。主要交易对象是未在交易所上市的股票。店头市场股票行市价格由交易双方协商决定。店头市场都有固定的场所,一般只做即期交易,不做期货交易。
二、 个人能做量化交易吗?
个人必须要进行量化交易,而且必须要这么做,
首先要明白量化交易不是自动交易,量化交易也不是技术分析。他只是利用计算机为工具大大提高工作效率的工具而已。
假如你投资股票,你按照技术分析操作,你的操作手法是MACD,那你知道MACD指标在历史上回测成功率是多少,如果MACD和kdj结合成功率是提高还是下降,如何优化参数组合,等等这些都需要量化分析。你要按基本面分析,那你知道有多少上市公司连续盈利十年吗。这个量化分析就能完成。
一下是我做的量化趋势指标截图
认真帮你回答这个问题,楼主可能想问的是,
1、个人有必要做量化交易吗。
2、个人如何实现量化交易。
回答 1:个人有必要做量化交易吗。?
中国股市创立以来的二十多年间,股市从公开的投融资平台,变成了许多股民一夜暴富的梦境。股市沦为赌场,散户们被当作“韭菜”。抛开牛市的狂热和股灾的哀嚎,我们需要静下心来想一想,是不是我们应该用更理性或是更科学的方法来对待股市投资这样一件严肃的事情呢?新兴的量化交易正在尝试提供一种理性投资的解决方案,通过大量的计算建立科学的盈利模型,以“大概率”赚钱事件为操作思路。
传统技术分析的本质就是寻找价格规律,基本面分析又何尝不是呢?有了计算机的帮助,这些找规律的事情完全可以由计算机完成,所以A股市场的 个人投资者是非常有必要尽早参与到量化交易的过程中来。
回答2:个人如何实现量化交易。?
个人实现量化交易分两种情况:
一种是你拥有全天候研究的“必要环境土壤”。这种情况你可以直接依据个人所拥有的资源平台(有些收费、有些免费)。
全天候研究的“必要环境土壤”是指——个人的程序语言能力(如matlab,python等等),以及充分的资源硬件与软件设备,如研究量化策略的模型软件(如天软TS系统等等——年费很贵,个人别想,如果你是在券业从业机构的量化研究部门上班,就别当别论,你可以充分调动这些软件资源),简单来说,就是量化策略到底能不能用、敢不敢用在实盘上。需要大量的研究环境。这种方式,不适合个人投资者。
一种是市面上已经出现一些,即有的量化交易系统,与研究平台。个人投资者,在没有足够的研究资本情况下,完全是可以实现傻瓜式一键实现实盘量化交易的(这里指的是股票)。量化交易策略模型也是现成的,您可以用现成的模型,也可以个性化改动模型的参数设置。具体实现方式,为避免广告嫌疑,见名+VX。
个人 当 然是 可以做量 化 交 易 的,系 统和 策 略 两个 方 面 难 度 都 是非 常 大 的, 个 人认 为, 分 工 合 作 才 能 有 更 好的效率, 专 业的人是 做 专 业的 事 。 如此, 你 也 可 以 在 自 己 擅 长 和感 兴 趣的领 域学 习 。 个人可以做,结合各个指标,对票进行塞选,能有信号,有效的进行股票组合,从而达到一定的收益 可以的,我感觉跟投赢家就是专门服务于中小投资者的量化交易平台三、 股票里面的量化是什么意思
拓展资料
一、常见的十大量化投资策略
01、海龟交易策略
海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。
02、阿尔法策略
阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。
在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。
03、多因子选股
多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。
04、双均线策略
双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。
双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效。
05、行业轮动
行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。
06、跨品种套利
跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。
跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。
07、指数增强
增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。
08、网格交易
网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量,不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。
10、高频交易策略
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。(该策略源码模板暂无)
四、 限制量化交易是什么意思?
五、 目前市面上的量化交易平台做到了什么程度?
交易开拓者程序化交易平台
根据账户状况和交易信号来推动交易订单,使用类似于Pascal TBL语言开发策略模型的语法。 TB为定量模型开发中的战略发展提供更为全面的账户和交易功能,市场数据功能和统计功能。 它提供了最近的国内TICK数据和多周期历史市场数据。 它还为战略绩效评估提供了基础。提供丰富的战略回溯报告项目。 就定量交易而言,单一的结核病终端支持同时接受报价和交易的20-30个单一物种图表,但由于客户技术架构,缺乏对高频率和更复杂政策的支持。 现阶段结核病在市场低端定量交易平台上有很多期货公司的合作份额较高。
天软量化研究和交易平台
天软定量研究交易平台采用TSL独特的TSL语言发展战略模式,全天软交易网关,实行量化交易。在定量模型研究和开发方面,我们采用了高性能数据仓库所提供的历史和TICK市场,基础数据,宏观数据等数据源,并提供了7000个开源函数库,用于战略开发,回溯测试, 性能分析。 在量化交易中,基本实现了自动交易,程序交易,算法交易等定量交易。
安翼金融终端程序化交易
安易金融终端是国内期货和券商独立开发的股票自动化交易工具。 交易模型是使用通用脚本语言和技术指标进行图表驱动的自动交易。 在这个阶段,Ahn免费使用程序化交易工具,为国内期货和股票提供历史价格。 相对简单的股票,对冲期货和图表交易都可以进行。
量化交易,从18世纪开始,金融投资的先驱已经开始探索各种不同的投资方法,经过多年的进化,已经尝试了从价值分析、风险套利到日间交易等不同的方向。
在当前中国资本市场的变化中,定量投资作为一种新兴的中国市场投资方式,是现代量化投资理论和数理统计方法的运用,在海大历史数据的各种“能带来超额收益的使用计算机技术的高概率事件制定一个模型验证的数量策略和治疗这些规则和策略,和固化的策略来指导投资的严格执行,为了获得可持续的稳定,高于平均水平的超额收益。
零起点Python大数据与量化交易
“零起点的Python大数据和量化交易”是最早的Python大数据和量化交易的原版书籍,与开发平台和zwquant开源软件量化学习,是一套大数据分析,学习资料完整的量化交易,可直接用于交易。”零起点的Python大数据和量化交易”有三个特点:第一,使一个企业的案例分析,完整的Python代码;第二,包含大量的案例和图形的Python源代码,没有基本的职业规划,了解Excel开始学习;第三,配备专业的集成开发平台。
量化交易与资金管理
著名对冲基金顾问Fred Jim多年来一直在《期货与期权》杂志上发表文章。他有丰富的贸易经验和知识。作者补充了最近的市场变化,如金融衍生产品的发展,并使用了许多接近时代的例子。定量交易和基金管理引入了多种方法,将市场预测转化为交易风险和基金管理,重点是基金管理的定量研究。
应用
国内应用的中低端量化交易平台主要有文华赢智程序化交易、交易开拓者、金字塔决策交易系统、达钱&multicharts、安翼金融终端等。国内应用的高端量化交易平台主要有Progress Apama、龙软DTS、国泰安量化投资平台、天软量化平台、飞创STP、易盛程序化交易、盛立SPT平台等。
六、 量化交易怎样做新上市的期货品种?有什么策略?
量化交易是利用计算机技术分析海量历史数据,通过分析数据总结出 "大概率 "盈利策略的交易方案,其最大的优势是减少人的情绪对交易策略的影响,特别是当市场狂躁或悲观时,量化交易可以避免很多不理性的投资决策。例如,大多数人都有追涨杀跌的倾向,与主观交易相比,可以在一定程度上降低风险。在做量化交易时,很多人容易犯一个错误,就是拿过去很长一段时间的历史数据做回测,优化参数,优化的目标是利润最大化。这种优化参数的方法,往往在你运行实盘后,会发现,与你过去回测的结果相差很大,为什么过去回测那么赚钱,而一实盘就亏钱呢?
其实你用的是历史数据,你过去可以赚很多钱,在未来很长一段时间内可能不会出现。过去,你可以在一个趋势中优化你的策略,使利润最大化。因为计算机匹配了所有的参数组合,在运行这些参数组合后,它计算出最有利可图的参数组合。计算机倾向于优化一个趋势,使你的利润最大化。
量化基金是利用数学、统计学、信息技术等量化投资方法,进行选股、择时、对冲等一系列操作,进而获得投资收益的一种基金。投资者在日常工作中经常会接触到主动管理型基金。例如,主动管理型基金通过对上市公司的财务分析和实地调研,决定对一些公司进行投资。这些基金的创始人和基金经理往往有数学、计算机和其他学科的背景。对上市公司的研究主要是研究一些特定指标对股票价格的影响,建立模型,通过计算机自动下单,从市场波动中获得超额收益。
小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我最大的帮助,谢谢大家了。
七、 股票里面的量化是什么意思
拓展资料
一、常见的十大量化投资策略
01、海龟交易策略
海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。
02、阿尔法策略
阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。
在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。
03、多因子选股
多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。
04、双均线策略
双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。
双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效。
05、行业轮动
行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。
06、跨品种套利
跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。
跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。
07、指数增强
增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。
08、网格交易
网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量,不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。
10、高频交易策略
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。(该策略源码模板暂无)
八、 量化交易真的有作用吗
1、量化交易能赚钱吗?
能。从量化交易其中的三个特点谈一谈。系统性、套利思想、和概率取胜。目前A股有3000多支股票,必然是存在错误定价、错误估值。如果单纯通过人力来索搜这个机会,当然也是能找出的,但其中的人力代价必然是高昂。相反,通过量化交易就能发现这个机会。问题就回到了套利可以赚钱吗?不一定每一笔都能,但长期来看必然是能的(获得超额收益)
2、量化交易相对其他方式能有什么优势?
纪律性。
目前,国内量化交易平台公司已经都发展不错了,给人耳目一新的便是Ricequant,从编程体验、数据、API来说,都能满足用户的研究、投资需求。现Ricequant量化已加入实时模拟 ( Paper Trading ) ,并在不久的将来加入实盘交易。国内的有一家平台,它的像素级的拷贝,圈内人也是人尽皆知的,不提也罢。 量化交易是量化金融中非常复杂的一个领域。要通过面试或者制定自己专属的交易策略,需要花费大量时间来学习相关知识。不仅如此,你还需要粗略会些编程技能,至少要会MATLAB,R语言或者Python其中一种语言。然而,随着策略交易频率的增加,技术方面相关性更强了,因此熟悉C语言或C++就更为重要。
量化交易系统由四个主要部分组成:
策略识别-寻找策略,利用优势以及决定交易频率
策略回测-获取数据,分析策略性能以及消除偏差
执行系统-与经纪(开户)公司对接,自动化交易以及最小化交易成本。
风险管理-最优资本配置,“押注规模”/凯利公式以及交易心理。
我们先来看看如何确定交易策略。
策略识别
所有的量化交易过程都是在研究初期就开始了的。这个研究过程包括寻找策略,看看这个策略是否与你正在运行的其他策略组合相融,获取测试策略所需的所有数据,并试图优化策略以获得更高的回报和/或更低的风险。如果你是以“散户”的身份运行交易策略,还需要考虑自己的资金要求,以及每项交易成本是如何影响策略的。
与人们普遍认为的相反,通过各种公开渠道寻找可盈利的策略是非常简单的。学术界会定期发表理论交易结果(尽管大部分是交易成本总额),量化金融的博客通常会详述其使用的策略,行业期刊也会概述基金采用的部分策略。
当然作用太大了,就简单的通达信软件,如果你把技术指标做出下面图片这样,还能分不清市场趋势。
九、 如何看待量化交易的回测?
美股研究社指出:不同风格的策略对于回测的要求是不同的,比如对于多因子选股或者趋势策略等,需要注意的几点是:
1. 区分好样本内数据和样本外数据,这个和机器学习很类似,样本内数据用于训练,样本外数据用于校验。这样做的目的是为了避免过拟合陷阱。
2. 收益的分布,看看你回测后所有交易的收益分布,看看你的收益来源是少数的几次大的收益还是来源多次的小的收益。来源于大的收益,你的收益波动性就很大,实盘往往会达不到你的效果。
3. 参数的稳定性。如果你某个参数过敏感,随便调整下就对收益影响很大,那你实盘的情况和模拟盘也有很大可能会有出入。
这类策略严格来说,避免了一些常见的坑,还是比较容易做到回测和实盘类似的。
京东量化最新推出了一些通达信的技术指标还不错,你们可以去看一下,应该能学到好多东西。
股票量化主要看成功率,盈亏比还有资金曲线图。好的量化系统资金回撤是比较低的,然后资金曲线比较平稳,这样就算一个好的量化交易系统。 现在量化交易软件,我觉得首先得看做那个市场,不同软件覆盖的市场也很不同。我用一些比如说
MT5(matatrade)主要在外汇
金字塔用在A股和期货
JointQuant(聚宽)、myquant(掘金)也是在A股
BitQuant(币宽)\FMZ 是数字货币
还有一些开源的Vn.py、zipline这些也都还不错,还是首先看你做哪个市场
这些软件主要的功能重点是回测和实盘交易的稳定性,回测其实还是有误差的,真实能包含的策略范围有限,如果是有实力的机构往往会自己拿着开源的做一套,比较容易满足自身的需要。如果没那么强的实力可以多用几个做做比较(别急着跑实盘)
十、 量化交易的应用
量化投资技术包括多种具体方法,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。在此,以统计套利和算法交易为例进行阐述。
1、统计套利。
统计套利是利用资产价格的历史统计规律进行的套利,是一种风险套利,其风险在于这种历史统计规律在
未来一段时间内是否继续存在。
统计套利的主要思路是先找出相关性最好的若干对投资品种,再找出每一对投资品种的长期均衡关系(协
整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓,买进被相对低估的品种、
卖空被相对高估的品种,等价差回归均衡后获利了结。
股指期货对冲是统计套利较长采用的一种操作策略,即利用不同国家、地区或行业的指数相关性,同时
买入、卖出一对指数期货进行交易。在经济全球化条件下,各个国家、地区和行业股票指数的关联性越来越
强,从而容易导致股指系统性风险的产生,因此,对指数间的统计套利进行对冲是一种低风险、高收益的交
易方式。
2、算法交易。
算法交易又称自动交易、黑盒交易或机器交易,是指通过设计算法,利用计算机程序发出交易指令的方
法。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格,甚至包括最后需要成交的资产数
量。
算法交易的主要类型有: (1) 被动型算法交易,也称结构型算法交易。该交易算法除利用历史数据估计交
易模型的关键参数外,不会根据市场的状况主动选择交易时机和交易的数量,而是按照一个既定的交易方针
进行交易。该策略的的核心是减少滑价(目标价与实际成交均价的差)。被动型算法交易最成熟,使用也最
为广泛,如在国际市场上使用最多的成交加权平均价格(VWAP)、时间加权平均价格(TWAP)等都属于被
动型算法交易。 (2) 主动型算法交易,也称机会型算法交易。这类交易算法根据市场的状况作出实时的决
策,判断是否交易、交易的数量、交易的价格等。主动型交易算法除了努力减少滑价以外,把关注的重点逐
渐转向了价格趋势预测上。 (3) 综合型算法交易,该交易是前两者的结合。这类算法常见的方式是先把交易
指令拆开,分布到若干个时间段内,每个时间段内具体如何交易由主动型交易算法进行判断。两者结合可达
到单纯一种算法无法达到的效果。
算法交易的交易策略有三:一是降低交易费用。大单指令通常被拆分为若干个小单指令渐次进入市场。
这个策略的成功程度可以通过比较同一时期的平均购买价格与成交量加权平均价来衡量。二是套利。典型的
套利策略通常包含三四个金融资产,如根据外汇市场利率平价理论,国内债券的价格、以外币标价的债券价
格、汇率现货及汇率远期合约价格之间将产生一定的关联,如果市场价格与该理论隐含的价格偏差较大,且
超过其交易成本,则可以用四笔交易来确保无风险利润。股指期货的期限套利也可以用算法交易来完成。三
是做市。做市包括在当前市场价格之上挂一个限价卖单或在当前价格之下挂一个限价买单,以便从买卖差价
中获利。此外,还有更复杂的策略,如“基准点“算法被交易员用来模拟指数收益,而”嗅探器“算法被用来发现
最动荡或最不稳定的市场。任何类型的模式识别或者预测模型都能用来启动算法交易。
参考文档
下载:郑州交易所动力煤仓单交割标准《金友期货官网》《沪深300股指期货代理》《泸指期货》《原油2005原油期货》《财经在线直播室》下载:期货加仓是什么意思更多关于《指标量化 复杂交易》的文档...本文来自网络,不代表【推坊网】立场,转载请注明出处:https://www.hlyfang.com/article/20844.html